This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713454007

Six new cycloartane triterpene glycosides from Actaea asiatica

Yun-Shuang Fan ${ }^{\text {ab; }}$ Zhi Yaoc; Yan-Wen Zhang ${ }^{\text {b }}$; Hong-Quan Duan ${ }^{\text {b }}$
${ }^{\text {a }}$ Key Laboratory of Hollow Fiber Membrane Material and Membrane Process of Ministry of Education, Tianjin Polytechnic University, Tianjin, China ${ }^{\text {b }}$ School of Pharmaceutical Sciences, Basic Medical Research Center of Tianjin, Tianjin Medical University, Tianjin, China ${ }^{\text {c }}$ Department of Immunology, Tianjin Medical University, Tianjin, China

To cite this Article Fan, Yun-Shuang, Yao, Zhi, Zhang, Yan-Wen and Duan, Hong-Quan(2009) 'Six new cycloartane triterpene glycosides from Actaea asiatica', Journal of Asian Natural Products Research, 11: 7, 588 - 596
To link to this Article: DOI: 10.1080/10286020902819848
URL: http://dx.doi.org/10.1080/10286020902819848

PLEASE SCROLL DOWN FOR ARTICLE

```
Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
```


Six new cycloartane triterpene glycosides from Actaea asiatica

Yun-Shuang Fan ${ }^{\text {ab }}$, Zhi Yao ${ }^{\text {c }}$, Yan-Wen Zhang ${ }^{\text {b }}$ and Hong-Quan Duan ${ }^{\text {b }}$ *
${ }^{a}$ Key Laboratory of Hollow Fiber Membrane Material and Membrane Process of Ministry of Education, Tianjin Polytechnic University, Tianjin 300160, China; ${ }^{b}$ School of Pharmaceutical Sciences, Basic Medical Research Center of Tianjin, Tianjin Medical University, Tianjin 300070, China; ${ }^{c}$ Department of Immunology, Tianjin Medical University, Tianjin 300070, China

(Received 3 November 2008; final version received 15 January 2009)
Six new cycloartane triterpene glycosides, ($3^{\prime}, 12 \beta$)- O-diacetyl-cimigenol-3-O- β-Dxylopyranoside (1), ($4^{\prime}, 25$)- O-diacetyl-cimigenol-3-O- β-D-xylopyranoside (2), $2^{\prime}-O$ -acetyl-25-O-methyl-cimigenol-3-O- β-D-xylopyranoside (3), 2^{\prime} - O-acetyl-25- O-ethyl-cimigenol-3-O- β-D-xylopyranoside (4), 3^{\prime} - O-acetyl-cimicifugoside (5), and $4^{\prime}-O-$ acetyl-23-epi-26-deoxycimifugoside (6), were isolated from the rhizomes of Actaea asiatica. Their structures were elucidated on the basis of chemical methods and spectroscopic analysis. Compounds 1, 2, 4-6 exhibited positive cytotoxic activities.

Keywords: Ranunculaceae; Actaea asiatica; cycloartane triterpene glycosides; cytotoxic activities

1. Introduction

Actaea asiatica Hara (Ranunculaceae) is widely distributed in the southwest and northwest of China. As a Chinese folk medicine, the rhizome of A. asiatica is used to treat headache, sore throat, measles, pertussis, and prolapse of uterus [1]. Many 9,19-cycloartane triterpene glycosides, as well as their cytotoxic activities, have been reported in previous studies [2-7]. In this paper, six new cycloartane triterpene glycosides ($\mathbf{1}-\mathbf{6}$) were isolated from the rhizomes of A. asiatica and their structures were determined by chemical methods and spectroscopic analysis, including 2D NMR spectra. Their cytotoxic activities of the isolated compounds were also researched.

2. Results and discussion

The ethyl acetate extract of the rhizomes of A. asiatica was separated by repeated
silica gel column chromatography, Toyopearl HW-40C, and preparative HPLC to give compounds $\mathbf{1}-\mathbf{6}$.

Compound 1 was isolated as an amorphous powder, and its high-resolution positive FTMS revealed a quasi-molecular ion at $m / z 743.3902[\mathrm{M}+\mathrm{Na}]^{+}$, indicating a molecular formula of $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{O}_{12}$. Its IR spectrum showed absorption bands at 3442 , 1735 , and $1734 \mathrm{~cm}^{-1}$, indicating the presence of hydroxyl and carboxyl groups. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ revealed the characteristic cyclopropane methylene signals at $\delta 0.33$ and 0.58 (each 1 H , d, $J=3.6 \mathrm{~Hz}$), two acetyl methyls at $\delta 2.13$, 1.98 (each $3 \mathrm{H}, \mathrm{s}$), a secondary methyl at δ $0.95(3 \mathrm{H}, \mathrm{d}, ~ J=6.0 \mathrm{~Hz})$, six methyl singlets at $\delta 0.99,1.22,1.26,1.33,1.50$, 1.51 (each $3 \mathrm{H}, \mathrm{s}$), and an anomeric proton at $\delta 4.85(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz})$. The ${ }^{13} \mathrm{C}$ NMR spectral data of $\mathbf{1}$ (Table 2) showed a methylene carbon of cyclopropane ring at

[^0]

Figure 1. The structures of compounds $\mathbf{1 - 6}$.
Table 1. ${ }^{1}$ H NMR spectral data of compounds $\mathbf{1 - 6}$.

Position	$1{ }^{\text {a }}$	$2^{\text {a }}$	$3^{\text {b }}$	$4^{\text {b }}$	$5^{\text {a }}$	$6^{\text {a }}$
1	1.10, 1.52	1.08, 2.27	Overlapped	Overlapped	1.18, 1.62 m	1.15, 1.52
2	1.90, 2.28	1.98, 2.35	1.70, 1.90	1.70, 1.92	$1.90,2.23 \mathrm{~m}$	1.85, 2.15
3	3.48 dd (4.0, 11.0)	3.49 dd (4.0, 11.0)	3.18 dd (4.5, 11.0)	3.19 dd (4.2, 11.0)	3.42 dd (3.8, 11.0)	3.40 dd (4.0, 11.0)
5	1.28	1.32	1.31	1.30	1.18	1.15
6	0.74 q (11.0), 1.50	0.80 q (11.0), 1.60	0.80, 1.59	0.77, 1.57	1.58, 1.82	1.48, 1.75
7	1.06, 2.07	1.13, 2.16	Overlapped	Overlapped	5.07 br d (6.1)	5.11 d (6.1)
8	1.65	1.70	1.60	1.62	-	-
11	1.15, 2.93	1.03, 2.04	Overlapped	Overlapped	$\begin{aligned} & 1.29,2.94 \mathrm{dd}(15.0, \\ & 9.0) \end{aligned}$	$\begin{aligned} & 1.23,2.92 \mathrm{dd}(15.0, \\ & 8.5) \end{aligned}$
12	5.26 br d (8.6)	1.53, 1.62	1.64	1.60	5.22 d (8.2)	5.24 d (8.3)
15	4.40 s	4.27 s	3.88 s	3.88 br d (7.0)	2.17, 1.96	2.12, 1.40
16	-	-	-	-	4.72 q (7.2)	4.32
17	1.62 d (12.5)	1.47 d (11.0)	1.40 d (11.1)	1.38 d (11.0)	1.82	1.81
18	1.26 s	1.16 s	1.07	1.07	1.42 s	1.50 s
19	$\begin{gathered} 0.33 \mathrm{~d}(3.6), 0.58 \\ \mathrm{~d}(3.6) \end{gathered}$	$\begin{aligned} & 0.27 \mathrm{~d}(4.2), 0.53 \\ & \mathrm{~d}(4.2) \end{aligned}$	$\begin{aligned} & 0.36 \mathrm{~d}(4.0), 0.62 \\ & \mathrm{~d}(4.0) \end{aligned}$	$\begin{gathered} 0.36 \mathrm{~d}(4.2), 0.63 \\ \mathrm{~d}(4.2) \end{gathered}$	$\begin{aligned} & 0.62 \mathrm{~d}(4.0), 1.13 \\ & \mathrm{~d}(4.0) \end{aligned}$	$\begin{aligned} & 0.52 \mathrm{~d}(3.6), 1.02 \\ & \mathrm{~d}(3.6) \end{aligned}$
20	1.65	1.65	1.65	1.67	1.83	2.25
21	0.95 d (6.0)	0.87 d (6.0)	0.88 d (6.4)	0.88 d (6.4)	0.98 d (6.4)	1.03 d (6.3)
22	1.05, 2.15	1.02, 2.34	0.98, 2.32	0.98, 2.31	1.72, 2.25	1.48, 1.60
23	4.77 d (9.0)	4.61 d (8.8)	4.40 d (9.0)	4.44 d (9.0)	-	-
24	3.77 br s	4.13 br s	3.45 br s	3.45 br s	3.94 s	3.68 s
26	1.51 s	1.70 s	1.07	1.07	5.76 s	$\begin{aligned} & 4.07 \mathrm{~d}(10.1), 3.63 \\ & \mathrm{~d}(10.1) \end{aligned}$
27	1.50 s	1.73 s	1.16	1.16	1.81 s	1.48 s
28	1.22 s	1.21 s	0.94	0.94	1.02 s	1.06 s
29	1.33 s	1.33 s	0.94	0.94	1.31 s	1.31 s
30	0.99 s	1.06 s	0.80	0.80	0.98 s	0.98 s
1^{\prime}	4.85 d (7.0)	4.88 d (7.0)	4.57 d (5.7)	4.59 d (5.7)	4.84 d (7.5)	4.84 d (7.5)
2^{\prime}	4.07 t (7.5)	4.08 t (7.7)	4.79 t (7.3)	4.80 t (7.3)	4.06 t (7.5)	4.06 t (8.1)
3^{\prime}	5.75 t (9.1)	4.28	3.61	3.60	5.74 t (9.1)	4.27 t (8.3)
4^{\prime}	4.20	5.41	3.69	3.68	4.22	5.40
5^{\prime}	3.72 t (12.0), 4.30	$\begin{aligned} & 3.62 \mathrm{dd}(7.6,12.0), \\ & 4.32 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 3.45, \operatorname{dd}(8.5,12.5), \\ & 4.08 \mathrm{dd}(4.0,11.8) \end{aligned}$	$\begin{aligned} & 3.45,4.09 \mathrm{dd}(3.8 \text {, } \\ & 11.8) \end{aligned}$	$\begin{gathered} 3.73 \mathrm{t}(12.0), 4.33 \\ \mathrm{dd}(4.2,8.5) \end{gathered}$	3.60 t (10.3), 4.34

[^1]$\delta 31.3$ (C-19), four oxygenated methine carbons at $\delta 88.9,79.6,71.7,90.3$, and two quaternary carbons at $\delta 112.4$ and 71.6 . All the above observations suggested that $\mathbf{1}$ was a high-oxygenated 9,19-cyclolanostane triterpene glycoside with two acetyl groups, and its ${ }^{13} \mathrm{C}$ NMR spectral data were similar to those of $12 \beta-O$-acetyl-cimi-genol-3-O- β-D-xylopyranoside [8], except for an additional acetyl group. In the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum, a spin-spin coupling system of $\mathrm{H}-2^{\prime}(\delta 4.07) / \mathrm{H}-3^{\prime}(\delta$ $5.75) / \mathrm{H}-4^{\prime}(\delta 4.20)$ was observed. Furthermore, the proton at $\delta 5.75\left(\mathrm{H}-3^{\prime}\right)$ showed the HMBC correlation with the carbonyl carbon of the acetyl group at $\delta 171.2$ and the proton at $\delta 4.84\left(\mathrm{H}-1^{\prime}\right)$ correlated with the carbon at $\delta 89.1$ (C-3). Thus, the acetyl group was located at $\mathrm{C}-3^{\prime}$ and the xylose moiety was connected with the aglycon at position $\mathrm{C}-3$. In addition, the HMBC correlation between $\mathrm{H}-12(\delta 5.26)$ and the carbonyl carbon ($\delta 170.9$, Ac) indicated that another acetyl group was attached to C-12.

In NOESY spectrum, the proton signal at $\delta 3.48(\mathrm{H}-3)$ correlated with $\mathrm{H}-5, \mathrm{H}-12$ with $\mathrm{H}_{3}-28$, and $\mathrm{H}-15$ with $\mathrm{H}-18$. Thus, relative configurations of 3-sugar, acetoxy, and hydroxyl groups were elucidated as 3β, 12β, and 15α, respectively. The absolute configurations of C-23 and C-24 were assigned as R and S by comparing the coupling constants of the $\mathrm{H}-23(J=9.0)$ and H-24 of $\mathbf{1}$ with those of known 9,19cyclolanostane triterpene glycosides [2,9]. The sugar was identified as xylose by acid hydrolysis and TLC analysis with an authentic sample, and the coupling constants of $\mathrm{H}-1^{\prime}$ at $\delta 4.85(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz})$ indicated that it has β configuration. Thus, the structure of $\mathbf{1}$ was elucidated as (3^{\prime}, 12β)-O-diacetyl-cimigenol-3-O- β-D-xylopyranoside (Figure 1).

Compound 2 has a molecular formula $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{O}_{11}$ from HR-FTMS at $m / z 727.4022$ $[\mathrm{M}+\mathrm{Na}]^{+}$. Its IR spectrum showed absorptions of hydroxyl ($3431 \mathrm{~cm}^{-1}$) and carbonyl ($1738 \mathrm{~cm}^{-1}$) groups. Compound 2 was also
a 9,19-cyclolanostane triterpene glycoside, its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 2) were similar to those of reported compound (25-O-acetyl-cimigenol-3-O- β-D-xylopyranoside) [9], except for the presence of an additional acetyl group at $\delta_{\mathrm{H}} 1.98(3 \mathrm{H}, \mathrm{s})$, and $\delta_{\mathrm{C}} 170.7(\mathrm{~s})$ and $21.4(\mathrm{q})$. The additional acetyl group could be located at $\mathrm{C}-4^{\prime}$ which was confirmed by the proton signal of $\mathrm{H}-4^{\prime}$ downfield shifted from $\delta 4.20$ to $5.41, \mathrm{C}-3$ shifted upfield from $\delta 79.0$ to 75.4 , and C-5 shifted upfield from $\delta 67.6$ to 63.6. Its sugar was identified as xylose by acid hydrolysis and TLC analysis with an authentic sample. In the HMBC spectrum, the proton signal at $\delta 5.41\left(\mathrm{H}-4^{\prime}\right)$ correlated with the carbon signals at $\delta 75.4\left(\mathrm{C}-3^{\prime}\right), 63.6\left(\mathrm{C}-5^{\prime}\right)$, and 170.7 (acetyl group), the signal at $\delta 4.88(\mathrm{H}-$ 1^{\prime}) correlated with the signal at $\delta 89.0(\mathrm{C}-3)$. Thus, the acetyl group was located at C-4', and the xylose moiety was connected with the aglycon at position C-3. Therefore, the structure of 2 was elucidated as $\left(4^{\prime}, 25\right)-O$ -diacetyl-cimigenol-3-O- β-D-xylopyranoside (Figure 1).

The molecular formula $\mathrm{C}_{38} \mathrm{H}_{60} \mathrm{O}_{10}$ for 3 was established by the high-resolution positive TOF-ESI-MS. The ${ }^{1} \mathrm{H}$ NMR spectral data of $\mathbf{3}$ (Table 1) showed the existence of cyclopropane methylene, seven methyls, one acetyl, one methoxy, and an anomeric proton. The ${ }^{13} \mathrm{C}$ NMR spectral data of $\mathbf{3}$ (Table 2) were similar to those of 2 , except for the presence of methoxyl and the difference from the location of the acetyl group. From the HMBC spectrum, the proton signal at δ $4.79\left(\mathrm{H}-2^{\prime}\right)$ correlated with the carbon signals at $\delta 102.2\left(\mathrm{C}-1^{\prime}\right), 73.4\left(\mathrm{C}-3^{\prime}\right), 170.5$ (acetyl group), and the methoxyl proton at $\delta 3.22$ correlated with the carbon at $\delta 75.8$ (C-25). Thus, the structure of $\mathbf{3}$ was elucidated as $2^{\prime}-O$-acetyl-25-methoxyl-cimigenol-3-O- β-D-xylopyranoside.

The molecular formula $\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{O}_{10}$ for 4 was determined from the HR-FTMS, showing one more methylene than 3. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of 4 (Tables 1 and 2) were similar to those of $\mathbf{3}$,

Table 2. ${ }^{13} \mathrm{C}$ NMR spectral data of compounds $\mathbf{1}-\mathbf{6}$.

Position	$1{ }^{\text {a }}$	$2^{\text {a }}$	$3{ }^{\text {b }}$	$4^{\text {b }}$	$5^{\text {a }}$	$6^{\text {a }}$
1	32.8	32.8	31.9	31.9	30.6	30.6
2	30.4	30.5	29.0	29.0	29.9	29.8
3	88.9	89.0	89.6	89.7	88.5	88.3
4	41.6	41.8	40.7	40.7	40.8	40.8
5	47.5	48.0	47.3	47.2	42.8	42.8
6	21.1	21.5	20.7	20.8	22.1	22.2
7	26.4	26.9	26.0	26.1	114.5	114.5
8	47.5	49.1	48.0	48.1	148.1	148.1
9	20.5	20.5	19.8	19.9	21.3	21.6
10	27.2	27.1	26.2	26.2	28.7	28.6
11	37.9	26.8	26.1	26.0	37.1	37.0
12	77.7	34.5	33.6	33.6	77.2	77.2
13	48.8	42.3	41.8	41.8	48.5	48.5
14	46.6	47.6	46.9	46.9	51.0	50.9
15	79.6	80.6	79.6	79.6	42.9	43.4
16	112.4	112.9	111.4	111.4	73.5	74.9
17	59.6	59.8	58.9	58.9	57.2	57.0
18	13.1	20.0	19.4	19.1	15.3	15.2
19	31.3	31.4	30.8	30.8	29.2	29.2
20	24.5	24.4	23.6	23.6	27.1	23.5
21	22.1	20.0	19.0	19.4	22.0	22.0
22	38.9	38.4	37.8	37.8	37.8	37.9
23	71.7	72.1	71.6	71.7	106.3	106.4
24	90.3	87.2	87.8	87.9	63.8	62.7
25	71.6	83.6	75.8	75.5	66.1	62.9
26	25.9	22.8	20.7	20.1	98.8	68.6
27	27.6	23.8	21.7	22.5	13.6	14.6
28	12.3	12.3	11.0	11.0	27.1	27.3
29	26.0	26.1	25.3	25.3	26.0	26.1
30	15.7	15.8	14.9	14.9	14.6	14.7
1^{\prime}	107.6	107.8	102.2	102.1	107.6	107.6
2^{\prime}	73.5	76.1	72.9	72.8	73.5	76.1
3^{\prime}	79.7	75.4	73.4	73.3	79.7	75.3
4^{\prime}	69.6	73.6	70.0	70.0	69.6	73.5
5^{\prime}	67.2	63.6	63.6	63.5	67.2	63.6

${ }^{\mathrm{a}} \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$.
${ }^{\mathrm{b}} \mathrm{CDCl}_{3}$.
except for the C-25 substituted group. Namely, the methoxyl in $\mathbf{3}$ was substituted by the ethoxyl at $\delta_{\mathrm{H}} 1.13(3 \mathrm{H}, \mathrm{t}$, $J=6.9 \mathrm{~Hz}), 3.38(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz})$, and at $\delta_{\mathrm{C}} 16.2(\mathrm{t})$ and $56.7(\mathrm{q})$ in 4 . Moreover, the HMBC correlation from the ethoxy proton at $\delta 3.38$ to $\mathrm{C}-25$ ($\delta 75.5$) indicated that the ethoxy group was located at C-25. Therefore, the structure of $\mathbf{4}$ was elucidated as $2^{\prime}-O$-acetyl-25- O-ethyl-cimigenol-3- O -β-D-xylopyranoside (Figure 1).

Compound 5 was isolated as an amorphous powder. Its HR-FTMS showed
a quasi-molecular ion peak at m / z $739.3635[\mathrm{M}+\mathrm{Na}]^{+}$indicating the molecular formula $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{O}_{12}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of 5 revealed the cyclopropane methylene signals at $\delta 0.62,1.13$ (each 1 H , $\mathrm{d}, J=4.0 \mathrm{~Hz}$), five tertiary methyls at δ $0.98,1.02,1.31,1.42,1.81$ (each $3 \mathrm{H}, \mathrm{s}$), a secondary methyl at $\delta 0.98(\mathrm{~d}, J=5.7 \mathrm{~Hz})$, two acetyl methyls at $\delta 2.00,2.18$, one anomeric proton at $\delta 4.84(\mathrm{~d}, J=7.5 \mathrm{~Hz})$, and a vinyl proton at $\delta 5.07$ (br d, $J=6.1 \mathrm{~Hz}$). The ${ }^{13} \mathrm{C}$ NMR spectral data of 5 (Table 2) showed five oxygenated
carbons assignable to the xylose moiety at $\delta 107.6$ ($\mathrm{C}-1^{\prime}$), 73.5 (C-2'), 79.7 (C-3'), 69.6 (C-4'), $67.2\left(\mathrm{C}-5^{\prime}\right)$, a double bond (δ $114.5,148.1)$, five oxygenated methine carbons at $\delta 88.5$ (C-3), 77.2 (C-12), 73.5 (C-16), 63.8 (C-24) and 98.8 (C-26), and two oxygenated quaternary carbons at δ 106.3 (C-23), 66.1 (C-25). The above spectral data showed a very close similarity to those of cimicifugoside [10], suggesting that compound $\mathbf{5}$ was also a 7-ene-9,19-cyclolanostane triterpene glycoside, and the side chain has $16,23: 23$, 26:24, 25-triepoxy structure.

In the HMBC spectrum, the proton at δ $0.98\left(\mathrm{H}_{3}-21\right)$ correlated with carbons at δ 57.2 (C-17), 27.1 (C-20), and 37.8 (C-22), the proton at $\delta 2.25(\mathrm{H}-22 \mathrm{a})$ with the carbons at $\delta 57.2$ (C-17) and 106.3 (C-23), the proton at $\delta 5.76\left(\mathrm{H}_{3}-26\right)$ with the carbons at $\delta 63.8(\mathrm{C}-24), 66.1(\mathrm{C}-25)$, and $13.6(\mathrm{C}-27)$, and the proton at $\delta 1.81(\mathrm{H}-$ 27) with the carbons at $\delta 106.3(\mathrm{C}-23)$ and 63.8 (C-24). Furthermore, the HR-FTMS showed that there are 11 unsaturated degrees in 5. To accommodate the HMBC correlations and unsaturated degrees, 16, 23:23, 26:24, 25-triepoxy rings of the side chain must exist. The sugar and two acetyl groups were elucidated by the same method as described above. Therefore, compound 5 was established as $3^{\prime}-O$-acetylcimicifugoside.

Compound 6 has the molecular formula $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{O}_{11}$ assigned by positive HR-FAB-MS. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of 6 (Tables 1 and 2) were similar to those of 5, except for a significant difference in the resonance of $\mathrm{C}-24, \mathrm{C}$ 26, C-27, and the sugar moiety. According to the literature [11], when the configuration of $\mathrm{C}-23 / \mathrm{C}-26$ epoxide is α-oriented, $\mathrm{H}-20$ and $\mathrm{C}-20$ were observed at $\delta 1.80$ and 26.0; on the contrary, H-20 and C-20 were observed at $\delta 2.25$ and 23.5 , respectively. Because the radius and negative substitute effects of oxygen are larger than those of carbon, changes of these chemical shifts can be explained as being due to the
γ-effect of axial oxygen between $\mathrm{C}-23$ and C-26 in 6 instead of an equatorial direction in 5. Thus, the configuration of C-23/C-26 epoxide is β-oriented, different from that of $\mathbf{5}$. The sugar moiety of $\mathbf{6}$ was identified as $4^{\prime}-O$-acetyl- β-D-xylose, as described for 2. Therefore, compound 6 was established as 4'-O-acetyl-23-epi-26-deoxycimicifugoside.

Compounds 1-6 were assayed for cytotoxicity using reported procedure [12]. The inhibition effects of isolated compounds were shown in Table 3. Compounds 1, 2, 4-6 exhibited positive cytotoxic activities against these tumor cells in vitro.

3. Experimental

3.1 General experimental procedures

Optical rotation was measured with a MC 241 digital polarimeter (Perkin-Elmer). The IR spectra were recorded on a NICOLET 380 FT-IR spectrophotometer (Thermo Electron Corporation, Waltham, MA, USA). NMR spectra were run on a Bruker AVANCE 300 instrument $\left({ }^{1} \mathrm{H}\right.$ NMR 300 MHz and ${ }^{13} \mathrm{C}$ NMR 75 MHz), both with tetramethylsilane as the internal standard. MS data were obtained on an IonSpec 4.7 Tesla FTMS instrument. HPLC was performed on JASCO Gulliver Series with PU-2089 (pump), RI-2031, and UV-2075 (detector). Preparative HPLC column was used as below: ODS (YMC-Pack ODS-A and SH-343-5). Column chromatography was performed on silica gel (Qingdao Haiyang Chemical Co., Ltd, Qingdao, China) and Toyopearl HW-40 (TOSOH, Tokyo, Japan). Flash chromatography was carried on a column (C18 HS 40M 1621-1, Biotage, Inc., Charlottesville, VA, USA).

3.2 Plant material

The rhizomes of A. asiatica were collected in August 2004 from Hefeng, Hubei Province, and were identified by Prof.

Table 3. Inhibition activities of compounds $\mathbf{1}-\mathbf{6}$ on Hela and L929 cell growth.

	Inhibition (\%)				
	Hela			L929	
Compound	$30 \mu \mathrm{~g} / \mathrm{ml}$	$10 \mu \mathrm{~g} / \mathrm{ml}$		$30 \mu \mathrm{~g} / \mathrm{ml}$	$10 \mu \mathrm{~g} / \mathrm{ml}$
$\mathbf{1}$	7.18	3.59	28.26	16.24	
$\mathbf{2}$	13.70	8.35	26.12	14.78	
$\mathbf{3}$	2.63	-2.15	24.03	13.54	
$\mathbf{4}$	31.54	22.50	13.93	6.96	
$\mathbf{5}$	17.99	7.49	27.19	23.34	
$\mathbf{6}$	14.42	4.13	46.97	23.05	

Ding-Rong Wan (School of Life Sciences, South-Central University for Nationalities). A voucher specimen (D20040901) has been deposited at the School of Pharmacy, Tianjin Medical University, China.

3.3 Extraction and isolation

The rhizomes of A. asiatica (2.6 kg) were refluxed three times with $95 \% \mathrm{EtOH}$ (5000 ml each) for 5 h . The extract was concentrated in vacuo to give a residue $(600 \mathrm{~g})$, which was suspended in water, and then partitioned with petroleum ether (PE), EtOAc, and $n-\mathrm{BuOH}$, successively.

The EtOAc extract (220 g) was chromatographed on a silica gel column, eluted with solvents of increasing polarity ($\mathrm{PE}-$ EtOAc (3:1, 1:1, 1:3), EtOAc, EtOAc$\mathrm{MeOH}(19: 1,10: 1,5: 1)$) to give 14 fractions (1-14). Fraction 3 (8.9 g) was chromatographed on MPLC with PE$\operatorname{EtOAc}(1: 1,1: 2,1: 3)$, and then EtOAc to give five fractions (3.1-3.5). Fraction 3.3 $(2.5 \mathrm{~g})$ was chromatographed on Toyopearl $\mathrm{HW}-40 \mathrm{C}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 2: 1\right)$ to give five fractions (3.3.1-3.3.5). Fraction 3.3.2 $(702 \mathrm{mg})$ was separated by HPLC (ODS, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 85: 15$) to give $\mathbf{1}$ $(10 \mathrm{mg}), 3(12.3 \mathrm{mg})$, and $4(5.8 \mathrm{mg})$. Fraction $3.2(2.1 \mathrm{~g})$ was separated by Toyopearl HW-40C with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (2:1) to give three fractions (3.2.1-3.2.3). Fraction 3.3.2 (277 mg) was separated by flash chromatography on a column (C18)
with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (85:15) to give three fractions (3.3.2.1-3.3.2.3). Fraction 3.3.2.1 was separated by HPLC (ODS, $\left.\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 80: 20\right)$ to give $5(24.3 \mathrm{mg})$ and $6(8.1 \mathrm{mg})$. Fraction 3.3.2.3 (15.5 mg) was separated by HPLC (ODS, $\mathrm{MeOH}-$ $\mathrm{H}_{2} \mathrm{O}, 8: 2$) to give $2(10.3 \mathrm{mg})$.

3.3.1 Compound 1

White amorphous powder; $[\alpha]_{\mathrm{D}}^{25}-5.03$ ($c=5.53$, pyridine); IR (KBr) $\nu_{\max }$ $\left(\mathrm{cm}^{-1}\right) 3442(\mathrm{OH}), 2937,1735,1382$, 1242, 1042; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta: 2.13$ $\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{OCOCH}_{3}\right), 1.98\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\right.$ OCOCH_{3}), other spectral data see Table 1; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta: 170.9,20.3$ (12$\left.\mathrm{OCOCH}_{3}\right)$, 171.2, $21.6\left(3^{\prime}-\mathrm{OCOCH}_{3}\right)$, other spectral data see Table 2. HR-MOLDI-FTMS m/z $743.3902[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{O}_{12} \mathrm{Na}, 743.3982$).

3.3.2 Compound 2

White amorphous powder; $[\alpha]_{\mathrm{D}}^{25}-4.04$ ($c=9.57$, pyridine); IR (KBr) $\nu_{\text {max }}$ $\left(\mathrm{cm}^{-1}\right) 3431(\mathrm{OH}), 2932,1738,1372$, 1247, 1042; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta: 1.98$ $\left(3 \mathrm{H}, \mathrm{s}, 25-\mathrm{OCOCH}_{3}\right), 1.98\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\right.$ OCOCH_{3}), other spectral data see Table 1; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta: 171.1,22.0$ (25$\left.\mathrm{OCOCH}_{3}\right), 170.7,21.4\left(4^{\prime}-\mathrm{OCOCH}_{3}\right)$, other spectral data see Table 2. HR-MOLDI-FTMS $m / z 727.4022[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{O}_{11} \mathrm{Na}, 727.4033$).

3.3.3 Compound 3

White amorphous powder; $[\alpha]_{\mathrm{D}}^{25}+15.57$ ($c=6.93$, pyridine); IR (KBr) $\nu_{\text {max }}$ $\left(\mathrm{cm}^{-1}\right) 3415(\mathrm{OH})$, 2937, 2870, 1740, 1375, 1246, 1073; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$: $3.22\left(3 \mathrm{H}, \mathrm{s}, 25-\mathrm{OCH}_{3}\right), 2.13\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\right.$ OCOCH_{3}), other spectral data see Table 1; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 49.3\left(25-\mathrm{OCH}_{3}\right)$, $170.5,21.0\left(2^{\prime}-\mathrm{OCOCH}_{3}\right)$, other spectral data see Table 2. HR-MOLDI-FTMS m/z $699.4073[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{38} \mathrm{H}_{60}$ $\left.\mathrm{O}_{10} \mathrm{Na}, 699.4084\right)$.

3.3.4 Compound 4

White amorphous powder; $[\alpha]_{\mathrm{D}}^{25}+0.60$ ($c=2.65$, pyridine); IR (KBr) $\nu_{\text {max }}$ $\left(\mathrm{cm}^{-1}\right) 3395(\mathrm{OH}), 2965,2933,2869$, 1458, 1379, 1254, 1166, 1047; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 1.13(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}, 25-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.38(2 \mathrm{H}, \mathrm{q}, J=6.9 \mathrm{~Hz}, 25-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.14\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OCOCH}_{3}\right)$, other spectral data see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta: 16.2,56.7\left(25-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 170.5, $21.0\left(2^{\prime}-\mathrm{OCOCH}_{3}\right)$, other spectral data see Table 2. HR-MOLDI-FTMS m/z $713.4237[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{39} \mathrm{H}_{62}$ $\mathrm{O}_{10} \mathrm{Na}, 713.4241$).

3.3.5 Compound 5

White amorphous powder; $[\alpha]_{\mathrm{D}}^{25}-82.54$ ($c=10.99$, pyridine); IR (KBr) $\nu_{\text {max }}$ $\left(\mathrm{cm}^{-1}\right) 3446(\mathrm{OH}), 2964,1735,1243$, 1042, 988; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta: 2.18(3 \mathrm{H}$, $\left.\mathrm{s}, \quad 12-\mathrm{OCOCH}_{3}\right), \quad 2.00\left(3 \mathrm{H}, \quad \mathrm{s}, \quad 3^{\prime}-\right.$ OCOCH_{3}), other spectral data see Table $1 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta: 171.2,21.6$ (12$\left.\mathrm{OCOCH}_{3}\right), 171.1,21.4\left(3^{\prime}-\mathrm{OCOCH}_{3}\right)$, other spectral data see Table 2. HR-MOLDI-FTMS m/z $739.3685[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{O}_{12} \mathrm{Na}, 739.3669$).

3.3.6 Compound 6

White amorphous powder; $[\alpha]_{\mathrm{D}}^{25}-72.92$ ($c=7.76$, pyridine); IR (KBr) $\nu_{\text {max }}$ $\left(\mathrm{cm}^{-1}\right) 3446(\mathrm{OH}), 2932,1734,1384$, 1245, 1031; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta: 2.20$
$\left(3 \mathrm{H}, \mathrm{s}, 12-\mathrm{OCOCH}_{3}\right), 1.99\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\right.$ OCOCH_{3}), other spectral data see Table 1 ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta: 171.2,21.8$ (12$\left.\mathrm{OCOCH}_{3}\right), 171.1,21.3\left(4^{\prime}-\mathrm{OCOCH}_{3}\right)$, other spectral data see Table 2. HR-MOLDI-FTMS $m / z 723.3671[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{O}_{11} \mathrm{Na}, 723.3720$).

3.3.7 Acid hydrolysis of $\mathbf{1}-\mathbf{6}$

Compounds $\mathbf{1 - 6}$ (each 2 mg) were refluxed with $1 \mathrm{M} \mathrm{CF} 33 \mathrm{COOH}(1 \mathrm{ml})$ in $\mathrm{EtOH}(2 \mathrm{ml})$ for $6 \mathrm{~h} . \mathrm{EtOH}$ and $\mathrm{CF}_{3} \mathrm{COOH}$ were then removed in vacuo from each reaction mixture and a residue was obtained. The sugar was identified from the residue by TLC comparison with authentic samples using $\mathrm{CHCl}_{3}-\mathrm{MeOH}-$ $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{COOH}$ (6:4:1:0.1) as mobile phases and visualized after spraying with p-anisaldehydro- $\mathrm{H}_{2} \mathrm{SO}_{4}$ reagent followed by heating at $110^{\circ} \mathrm{C}$ for 5 min . Xylose was observed at R_{f} values of 0.55 .

Acknowledgement

The project was sponsored by the Scientific Research Foundation of Tianjin Medical University.

References

[1] D.R. Wan, J. Chin. Med. Mater. 13, 13 (1990).
[2] Y.S. Fan, W. Jia, A.H. Zhao, J. Teng, and H.Q. Duan, Chin. Chem. Lett. 17, 1477 (2006).
[3] Y.S. Fan, Y. Zhi, J. Teng, P. Qin, F.G. Zhang, and H.Q. Duan, Chin. Tradit. Herb. Drugs 38, 7 (2007).
[4] J.C. Gao, J.C. Zhang, Z.J. Lu, G.Y. Zhu, M.S. Yang, and P.G. Xiao, Biochem. Syst. Ecol. 34, 710 (2006).
[5] J.C. Gao, F.H. Huang, J.C. Zhang, G.Y. Zhu, M.S. Yang, and P.G. Xiao, J. Nat. Prod. 69, 1500 (2006).
[6] B. Lu, Y.S. Fan, and H.Q. Duan, China J. Chin. Mater. Med. 33, 1508 (2008).
[7] Z. Tian, M.S. Yang, F. Huang, K.G. Li, J.Y. Si, L. Shi, S.B. Chen, and P.G. Xiao, Cancer Lett. 226, 65 (2005).
[8] G.F. Lai, Y.F. Wang, L.M. Fan, J.X. Cao, and S.D. Luo, J. Asian Nat. Prod. Res. 7, 695 (2005).
[9] C.J. Li, D.H. Chen, and P.G. Xiao, Acta Pharm. Sin. 28, 777 (1993)
[10] A. Kusano, M. Takahira, and M. Shibano, Chem. Pharm. Bull. 46, 467 (1998).
[11] S.N. Chen, W.K. Li, D.S. Fabricant, B.D. Santarsiero, A. Mesecar, J.F. Fitzloff,
H.H.S. Fong, and N.R. Farnsworth, J. Nat. Prod. 65, 601 (2002).
[12] J.T. Zhang, Modern Pharmacological Experiment Methods (Peking Union Medical College Press, Peking, 1998), p. 701.

[^0]: *Corresponding author. Email: duanhq@tijmu.edu.cn

 ISSN 1028-6020 print/ISSN 1477-2213 online
 © 2009 Taylor \& Francis
 DOI: 10.1080/10286020902819848
 http://www.informaworld.com

[^1]: ${ }^{\mathrm{a}}{ }^{\mathrm{a}} \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$,
 ${ }^{\mathrm{b}} \mathrm{CDCl}_{3}$.

